used. Other species concentrations at the boundaries, as well as all species at the top of the
modeling domain, are set to tropospheric clean-air concentrations.

Meteorological data are assimilated by the first stage of preprocessors. These data
contain regular hourly observations from U.S. National Weather Service surface stations (and
from similar stations in Canada as necessary), including wind speed and direction, air
temperature, dew point, atmospheric pressure, and cloud amounts and heights. Twice-daily
sounding data, from the upper-air observation network also are included in the meteorological
database. Upper-air meteorological parameters include atmospheric pressure, wind speed and
direction, and air temperature, dew point. Finally, both buoy and Coastal Marine Automated
Station data are used. The parameters that typically are reported include wind speed and
direction and air and sea temperatures.

Emissions data for the primary species are input to the ROM system as well.
Originally these data were provided from the 1985 emissions inventory of NAPAP, with 18.5-
km spatial resolution. Most recently, the interim regional inventory has been used widely to
support current applications of the ROM. It represents an update and improvement of the
NAPAP inventory and is being used to support SIP modeling until state inventories are
approved (U.S. Environmental Protection Agency, 1993a,b). Species included are CO, NO,
NO,, and 10 hydrocarbon reactivity categories. Natural hydrocarbons also are input, including
isoprene explicitly, monoterpenes divided among the existing reactivity classes, and
unidentified hydrocarbons. The chemical mechanism in ROM is the CBM-IV.

Land-use input data consist of 11 land-use categories in 1/4L longitude by 1/6L]
latitude grid cells. The data are more than 20 years old and represent a weakness. New land-
use data slowly are being collected and released. Changes in land use over the last 20 years
may change significantly the estimates of biogenic hydrocarbon emissions for large regions of
the United States. Data are provided for the United States and Canada as far as 55[] N. The
land-use categories are (1) urban land, (2) agricultural land, (3) range land, (4) deciduous
forests, (5) coniferous forests, (6) mixed-forest wetlands, (7) water, (8) barren land, (9)
nonforested wetland, (10) mixed agricultural land and range land, and (11) rocky, open places
occupied by low shrubs and lichens. Land-use data are used to obtain biogenic emissions
estimates, as a function of the area of vegetative land cover, and for the determination of
surface heat fluxes.

Topography input data consist of altitude matrices of elevations in a 7.5[] x 7.5[]
grid. The data are obtained from the GRIDS database operated by EPA's Office of
Information Resources Management. Topography data are used in the calculation of layer
heights.

The ROM does have its limitations, including the large grid size, relatively crude
wind fields, and highly empirical vertical mixing assumptions (Wolff, 1993).

3.6.3.3 The Regional Acid Deposition Model

The RADM initially was developed at the NCAR for EPA and subsequently was
refined and improved at the State University of New York at Albany. The model is an
Eulerian transport, transformation, and removal model that includes a treatment of the relevant
physical and chemical processes leading to acid deposition and the formation of photochemical
oxidants. As summarized in Tables 3-21 through 3-25, these processes include atmospheric
transport and mixing, gas-phase and aqueous-phase chemical transformations, dry deposition,
and cloud mixing and scavenging.

3-154



Chemical trace species are transported and diffused through the three-dimensional
RADM grid using externally specified meteorological data. The RADM uses hourly three-
dimensional fields of horizontal winds, temperature, and water vapor mixing ratio calculated
by the meteorological model MM4 with FDDA. In addition, RADM requires
two-dimensional, hourly fields of surface temperature, surface pressure, and precipitation rates
over the model domain. Kuo et al. (1985) found that in order to calculate accurate mesoscale
trajectories, at least 3-h temporal resolution is desirable, and the 12-h resolution of upper air
observations is inadequate. Recent verification studies with 30 meteorological episodes by
Stauffer and Seaman (1990) further support the use of MMS5 data with FDDA. Using
meteorology generated from a dynamically consistent meteorological model can introduce
errors caused by simulation errors associated with the meteorological model. These
uncertainties can be quantified through objective verification studies with observed data
(Anthes et al., 1985; Stauffer and Seaman, 1990).
The RADM?2 chemical mechanism has been described by Stockwell et al. (1990),
Chang et al. (1991b), Carter and Lurmann (1990), and Stockwell and Lurmann (1989). For
RADM2, the VOCs are aggregated into 12 classes of reactive organic species. Each category
of VOC is represented by several model species that span the required range for reaction with
the OH radical. Most emitted organic compounds are lumped into surrogate species of similar
reactivity and molecular weight, although organic chemicals with large emissions are treated as
separate model species even though their reactivities may be similar. Categories of VOCs with
large reactivity differences and complicated secondary chemistries are represented by larger
numbers of intermediate and stable species. During the aggregation of organic species, the
principle of reactivity weighting is followed to attempt to account for differences in reactivity.
A major part of the SARMAP program described earlier is the extension of the
RADM. The SARMAP is the modeling and data analysis component of a multi-year
collaboration between two projects— SJVAQS and AUSPEX. In the near term, the objective
of SARMAP is to produce a model that can be used to examine scenarios for control of
O, precursor emissions as required under the CAAA for the 1994 planning cycle. The goals of
the SARMAP modeling program can be summarized as follows:
¢ Development of a comprehensive state-of-the-science three-dimensional
modeling system (consisting of emissions, meteorological, and air quality
models) suitable for the simulation of O, concentrations, PM,, concentrations,
visibility degradation, and acid deposition;
¢ Evaluation of the modeling system and its individual components against
experimental data collected during the STVAQS/AUSPEX field program; and
¢ Application of the model to estimate the effect of changes in emission levels on
O, concentrations, PM,, concentrations, visibility degradation, and acid
deposition.
The general attributes of the SARMAP modeling system are listed below.
¢ Integrated system of individual modules, including air quality, meteorological,
emissions, and emissions projection; full compatibility of gridding system
among all models.
¢ Ozone estimation capability; capability for efficiently incorporating modules for
simulating aerosols, visibility, and acid deposition.
e Applicability at urban, subregional, and regional scales, embodying a full range
of anticipated physical, chemical, and terrain characteristics.
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e (Capability of being driven by larger meteorological models, if desired (for
generating initial and boundary conditions).
¢ (Capability of generating as output a full complement of chemical species
concentrations and meteorological parameters.
Variable horizontal grid size.
Variable number of vertical layers.
Variable depth of vertical layers.
Capability of nested grid application.
Capability of varying the number of vertical layers with time of day. Selection
of number of layers and timing of changes to be model-driven.
¢ Improved treatment of emissions injection aloft, including placement of plumes
in the vertical, treatment of inversion penetration, proper vertical dilution of
plumes, and proper treatment of chemistry.
Inclusion of plume-in-grid capability.
Capability for use of "computational tracers" for a variety of tests.
Capability of simulating the O;-VOC-NO, system alone or in tandem with the
aerosol system.
e (apability of simulating aerosols for the O;-VOC-NO, system.
The following modifications to the RADM?2 gas-phase chemical mechanism have
been made:
¢ Updating the rate constants, product parameters, and absorption cross sections
and quantum yields for consistency with current recommendations;
Improving the treatment of isoprene chemistry;
Adapting the SAPRC emissions processing scheme to the RADM2 mechanism;
and
® Adding extra species (acetaldehyde, PAN, and an additional aromatic) and their
associated reactions and products.
The Smolarkiewicz scheme currently used in RADM will be replaced with the Bott scheme.
This scheme is more accurate than the Smolarkiewicz scheme for continuous plumes and at low
grid resolutions. The RADM cloud module will be replaced with the ADOM module. The
RADM dry deposition module currently underestimates dry deposition velocities under stable
conditions. This can result in unrealistically high O, concentrations at night.

3.6.4 Evaluation of Model Performance

Air quality models are evaluated by comparing their predictions with ambient
observations. Because a model's demonstration of attainment of the O; NAAQS is based on
hypothetical reductions of emissions from a base-year-episode simulation, the accuracy of the
base-year simulation is necessary, but not sufficient. An adequate model should give accurate
predictions of current peak O; concentrations and temporal and spatial O; patterns. It should
also respond accurately to changes in VOC and NO, emissions, to differences in VOC
reactivity, and to spatial and temporal changes in emissions patterns for future years.

Model performance can be evaluated at several levels. The important sub-models,
the emissions model, the meteorological model, and the chemical mechanism can be evaluated
independently, and the model as a whole can be evaluated. Evaluation of emissions models
can be carried out with special measurements designed to isolate the effects of emissions from
a particular source category, such as tunnel studies (Pierson et al., 1990) or on-road
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surveillance of motor vehicles (Lawson et al., 1990) to evaluate the accuracy of motor vehicle
emissions models. Meteorological sub-models can be evaluated from the results of tracer
experiments. Chemical mechanisms have traditionally been developed and evaluated on the
basis of smog chamber experiments. A question that merits continued attention is how well
chemical mechanisms developed with reference to smog chamber data perform when
simulating the ambient atmosphere. As noted in this section, comparisons of observed and
predicted concentrations for all important precursors, intermediates, and products are
important in assessing the accuracy of a chemical mechanism.

Compilations of the performance of photochemical models in the South Coast Air
Basin of California and in other urban areas indicate a general tendency toward the
underprediction of O, concentrations and particularly O; maxima. It should be noted that
different areas of the country are characterized by different controlling factors in
O, generation, so the reasons for O, underprediction in one area may not be the same as in
another. A case in point is the possibility of anthropogenic ROG emissions underestimation in
urban areas versus biogenic ROG emissions underestimation in rural and regional areas. It is
well-recognized that urban and regional photochemical models have a number of uncertain
input quantities, so it is possible, by adjusting these quantities within their ranges of
uncertainty, to improve O, predictions. This process, which is inherent in any modeling
exercise because of the uncertainty associated with many of the input quantities, can lead to
getting the right answer for the wrong reason. Because the modeling of an O, episode usually
is carried out to establish a "base case" against which to evaluate the effects of VOC and NO,
emissions changes, the accuracy of the base case is vital for obtaining a valid assessment of the
effects of emissions perturbations. Due to the nonlinear response of the O,/VOC/NO, system,
conclusions drawn about the effect of VOC and NO, emissions changes may not reflect actual
atmospheric response if the base case simulation is inaccurate. For this reason, it is important
to understand the reasons why the base case simulation may not agree with observations.
Several more or less equivalent alternate base cases may exist due to the fact that it often is
possible to vary inputs within their ranges of uncertainties to achieve comparable model
performance. Unfortunately, the O; responses to identical VOC/NO, controls may be rather
different depending on which base case is used.

3.6.4.1 Model Performance Evaluation Procedures

Specific numerical and graphic procedures have been recommended for evaluation
of the accuracy of grid-based photochemical models (Tesche et al., 1990b). The recommended
methods include the calculation of peak prediction accuracy; various statistics based on
concentration residuals; and time series of predicted and observed hourly concentrations. Four
numerical measures appear to be most helpful in making an initial assessment of the adequacy
of a photochemical simulation (Tesche et al., 1990b): (1) the paired peak prediction accuracy,
(2) the unpaired peak prediction accuracy, (3) the mean normalized bias, and (4) the mean
absolute normalized gross error.

Accurate matching of O; alone may not be sufficient to ensure that a model is
performing accurately. The possibility of compensatory errors must be recognized (in which
two or more sources of error interact in such a way that O is predicted accurately, but for the
wrong reasons). The inaccuracies offset each other in part. The modeling effort should be
designed to minimize the likelihood of the presence of compensatory errors.
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Evaluation of model performance for precursor and intermediate species, as well as
for product species other than O;, when ambient concentration data for these species are
available, significantly improves the chances that a flawed model will be identified.
Comparisons of observed and predicted concentrations for all important precursors,
intermediates, and products involved in photochemical air pollution, such as individual VOCs,
NO, NO,, PAN, O,, H,0,, HNO,, and HNO;, are useful in model evaluation, especially with
respect to the chemistry component of the model (Jeffries et al., 1992). Comparisons of
predictions and observations for total organic nitrates (mainly PAN) and inorganic nitrates
(HNO; and nitrate aerosol) can be used to test qualitatively whether the emissions inventory
has the correct relative amounts of VOCs and NO,. However, in order to include HNO; and
nitrate aerosol in the data set for model comparisons, the model should include an adequate
description of the HNO, depletion process associated with aerosol formation.

Adequate model performance for several reactive species increases the assurance
that correct O, predictions are not a result of chance or fortuitous cancellation of errors
introduced by various assumptions. Multispecies comparisons could be the key in
discriminating among alternative modeling approaches that provide similar predictions of
O, concentrations.

As noted above, photochemical models have the potential to produce nearly the
right O, concentrations when performance is evaluated, but do so because two or more flaws
were compensating each other. The existence of compensating errors in many modeling
applications is suspected because most applications have used emission inventories whose
validity is now in question (National Research Council, 1991). Underestimation of VOC
emissions from motor vehicles may be responsible for the lack of agreement between
inventories and ambient concentration data (Baugues, 1986; Lawson et al., 1990; Pierson
et al., 1990; Fujita et al., 1992). Underestimation of emissions from other sources is also a
possibility. One potentially underestimated VOC source is vegetation, which naturally emits
VOCs. An underestimation of VOC emissions could be compensated for by underestimation
of mixing height or wind speed, by overestimation of boundary concentrations of O; or
precursors, or by inaccurate chemistry modules. Boundary concentrations (which can be
obtained from measurements or regional models or by assuming background concentrations,
often are poorly defined.

If only a routine database is available for modeling O; in an urban area, then there
are four areas of concern that require attention (Roth, 1992).

(1) Air Quality Aloft. These data most likely will not be available. These
measurements are important and are instrumental for diagnostic analysis of
model simulations.

(2) Boundary Conditions. If the possibility of significant transport into the region
exists, but the data are not available, the boundary conditions become a
variable that allows the introduction of compensatory errors if the emissions
estimates are inaccurate. An approach to circumventing this problem is to
define the region in such a way that the boundaries become a much less
significant issue.

(3) Ambient VOC Data. These generally are not routinely available. In their
absence, evaluation of model performance is hampered.

(4) Meteorological Data Aloft. Very often, there are only surface measurements
and a few soundings from which to extrapolate the needed data.
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If any of these four areas is missing from the database, the performance evaluation
and subsequent model application must be planned to minimize the possibility of compensatory
errors.

3.6.4.2 Performance Evaluation of Ozone Air Quality Models
Urban Airshed Model

The UAM has been applied to many urban areas in the United States and Europe,
and most of these studies have included some form of performance evaluation (see summary in
Tesche et al., 1993, Table 6-2). Thus, there is a growing body of information concerning the
accuracy of the model's predictions; UAM itself is continuing to undergo revision.
Evaluations of UAM's performance have been carried out for a number of geographic areas.
Evaluations conducted since 1985 have indicated mean discrepancies between predicted and
measured O, values of 20 to 40% of the observations, when paired in space and time (Roth
et al., 1990). The prediction of peaks exhibits relative errors that are smaller than the average
error, with a tendency toward underprediction (Roth et al., 1990). The discrepancies between
predicted and measured NO, in UAM applications are on the order of 30 to 50%, with no
improvement over the history of modeling applications (Roth et al., 1990). Underprediction of
NO, by UAM has been typical, generally on the order of 20 to 40% (Roth et al., 1990).

As a result of the discovery of significantly underestimated mobile source VOC
emissions (in the late 1980s), this emissions underestimation is the leading cause of
O; underprediction in urban areas.

Regional Oxidant Model

A primary role of the ROM is to estimate boundary conditions for use by UAM in
evaluating hydrocarbon and NO, reduction strategies for urban areas in the eastern United
States. This is especially the case in areas where transport is a significant element (U.S.
Environmental Protection Agency, 1990d). Analysis of regional O, abatement strategies also
is a major role of the ROM (Possiel et al., 1990).

The ROM has been used in the EPA program, the Regional Ozone Modeling for
Northeast Transport (ROMNET) program, to assess the effectiveness of various regional
emission control strategies in lowering O, concentrations to nationally mandated levels for the
protection of human health, forests, and crops (Meyer et al., 1991b). As part of the ROMNET
program, the ROM also is being used to provide regionally consistent initial and upwind
boundary conditions to smaller-scale urban models for simulations of future-year scenarios.

The most complete testing of ROM?2.0 was accomplished in an evaluation with the
50-day (July 12 to August 31, 1980) Northeastern Regional Oxidant Study database (Schere
and Wayland, 1989a,b). The model underestimated the highest values and overestimated the
lowest. It produced an overall 2% overprediction in predicting maximum daily
O, concentrations averaged over aggregate groups of monitoring stations. A key indicator of
model performance on the regional scale is the accuracy of simulating the spatial extent and
location, as well as the magnitude, of the pollutant concentrations within plumes from
significant source areas. In ROM2.0 performance analyses, plumes from the major
metropolitan areas of the Northeast Corridor, including Washington, DC; Baltimore, MD;
New York; and Boston, could be clearly discerned in the model predictions under episodic
conditions. Generally, the plumes were well characterized by the model, although there was
evidence of a westerly transport bias and underprediction of O, concentrations near the center
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of the plume. Using aircraft data, ROM2.0 was found to underpredict the regional
tropospheric burden of O;.
The evaluation of ROM2.1 (Pierce et al., 1990), unlike that of ROM2.0, was based
on routinely archived data from state and local agency monitoring sites rather than on an
intensive field-study period. The evaluation consisted of the comparison of observed and
predicted O, concentrations during selected episodes (totaling 26 days) of high O, observed
during the summer of 1985. Evaluation showed that ROM2.1 underestimated the highest
values and slightly overestimated the lowest; underestimates of the upper percentiles tended to
be more prevalent in the southern and western areas of the ROMNET domain (Table 3-26).
The model exhibited an overall 1.4% overprediction in predicting maximum daily O,
concentrations averaged over aggregate groups of monitoring stations, and it appears to correct
for the westerly transport bias of high-O, plumes in the Northeast Corridor seen in ROM2.0.
As with ROM2.0, model performance degraded as a function of increasingly complex
mesoscale wind fields.
In a recent evaluation of ROM (Systems Applications International, 1993),
ROM2.2 overestimated observed O; maxima by 20 to 30 ppb over the period of July 4 through
6, 1988, and predicted an episodic peak of 242 ppb on July 9, 1988, when the observed peak
was 138 ppb. The ROM2.2 performance for hourly O, concentrations in the New York region
exceeded the range of EPA acceptable performance by a factor of two 90% of the time during
the July 1988 episode. The Systems Applications International (1993) report concluded that
"the patchiness of the ROM2.2 predictions compared to the observations raises serious
questions as to whether the model will respond correctly to emission control strategies." The
major conclusions of that report were:
e Model performance downwind of New York City is "unacceptable". The model
significantly overpredicts peak O; levels, and the predicted diurnal variation of
O, occurs too late in the afternoon.

® Model performance for the Philadelphia and Baltimore/Washington urban
plumes is "poor" with "unpaired peak estimation accuracy at the outer edge of
the acceptable range."

¢ Elsewhere, the model seems to give good results, although it produces O, spatial

distributions that are too "patchy" when compared to observations.

There is a systematic westerly bias in the ROM2.2 wind fields.

The model performance for NO, is "extremely poor" indicating that ROM2.2
may be overestimating the VOC/NO, ratios across the region.

3.6.4.3 Database Limitations
As previously mentioned, the use of routine air quality and meteorological data
requires that a number of assumptions be made about key model inputs. Although intensive
field studies are desirable during O, episodes to acquire the full set of data required, three key
problems arise: (1) such studies are expensive and, therefore, are limited in number; (2) the
time required to carry out field studies usually exceeds the time available; and (3) most field
studies have not captured the worst O, episodes. Because EPA guidance emphasizes planning
to meet worst-case conditions, field data often must be manipulated to approximate highest
O, concentrations. Such adjustments invariably increase uncertainty in model projections.
Studies that have, or will, provide data for model evaluation include the St. Louis,
MO, RAPS, conducted in 1975 and 1976; the Northeast Corridor Regional Modeling Project,
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conducted in 1979 and 1980; the South Central Coast Cooperative Aerometric Monitoring
Program, conducted in 1985; SCAQS conducted in 1987; studies in Sacramento and

San Diego, CA, in 1990; SJVAQS/AUSPEX conducted in 1990; LMOS conducted in 1990
and 1991; SOS conducted in 1991 and 1992; and a Gulf Coast study for 1993.

In most cases, field studies have not coincided with periods in which ozone
concentrations have attained values as high as that on which the SIP must be based. Given the
low probabilities of occurrence of the most adverse meteorological conditions and the fact that
field studies typically acquire data for two or three ozone episodes, obtaining a design value
concentration during the course of a field study is unlikely.

The EPA recommends that the five highest daily maximum O, concentrations at a
design-value site, selected from the three most recent years, be modeled if EKMA is used for a
SIP (U.S. Environmental Protection Agency, 1989b). Because EKMA's data requirements are
minimal, it can be applied to the worst cases. In contrast, the number of episodes available for
grid-based modeling is less than desirable in all areas. In addition, any available intensive
databases often do not include the worst-case meteorology; intensive databases typically restrict
modeling to two or three O, episodes having a duration of 2 to 3 days each. Moreover, the
intensive databases never encompass the full range of meteorological conditions of interest (if
O, exceedances occur in an area under different meteorological conditions, the relative
effectiveness of different control strategies might vary with the different meteorological
conditions). The EPA specifies procedures for episode selection for use with grid-based
models (U.S. Environmental Protection Agency, 1991b).

Because the number of intensive databases is limited both in terms of episodes and
regions, EPA has investigated the feasibility of applying UAM without conducting intensive
field studies (Scheffe and Morris, 1990, 1991). These studies, known as the Practice for Low-
cost Application in Nonattainment Regions (PLANR), were conducted for New York;
Philadelphia; Atlanta; Dallas-Fort Worth, TX; and St. Louis. Of the five cities studied,

St. Louis, New York, and Philadelphia had intensive databases available. Simulations were
carried out using both routine and intensive databases for St. Louis and Philadelphia. Model
performance using routine data was much better for St. Louis than for Philadelphia (Scheffe
and Morris, 1990, 1991). Scheffe and Morris (1990, 1991) cautioned that the differing results
may be complicated by the quality of the databases, but they speculate that model performance
using routine databases for Philadelphia might have been poorer because of regional transport.
Performance statistics for all four applications using routine data were consistent with other
UAM applications (Scheffe and Morris, 1990, 1991); however, the paucity of data in the
routine databases precluded any investigation of the possibility that compensating errors
occurred.

Scheffe and Morris (1990, 1991) note that the PLANR lack of air quality data was
addressed by extending the length of the simulations and expanding the upwind boundary,
which, in effect, increased the need for accurate emissions inventories (boundary conditions
could also be obtained through use of ROM). For PLANR applications, gridded emissions
were created from routine county-level emission inventories by utilizing an emissions program
that made use of surrogate information, such as population distribution. The PLANR study
represents an interesting start on the problem of model application to areas without intensive
databases; however the results were not sufficiently definitive for drawing conclusions of a
broad, general nature.
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3.6.5 Use of Ozone Air Quality Models for Evaluating Control Strategies

Photochemical air quality models are used for control strategy evaluation by first
demonstrating that a past episode, or episodes, can be adequately simulated and then reducing
hydrocarbon or NO, emissions in the model inputs and in assessing the effects of these
reductions on O; in the region. Ozone concentrations can be decreased by reducing either
VOC or NO, concentrations to sufficiently low levels. The effects of NO, emissions
reductions on O, concentrations vary because NO, is an atypical precursor (i.e., although it is
necessary for O, formation, fresh NO emissions remove O,, and high concentrations of NO,
retard the rate of O; formation by removing radicals). Control of NO, tends to accelerate the
rate of O, formation; however, its effects on peak O; concentration depend on the location and
timing of the control and on ambient concentrations of VOCs and NO,, which vary widely in
time and space, even within a single urban area during 1 day.

At a given VOC level, as the initial NO, is increased, O, first increases, then peaks,
and then decreases. The reduction in peak O, with increasing NO, is a well-established
chemical phenomenon. The peak in O, formation occurs at an initial VOC/NO; ratio of about
10/1 (i.e., 10 ppbC/1 ppb). At fixed NO, level, as VOC is increased, O, formation increases
but then levels off. As a result of this behavior, at VOC/NO, ratios below about 10/1, VOC
reduction has been the preferred strategy for O, reduction. In this region NO, reductions
speed up O, formation and lead to higher peak O, values. At VOC/NO, ratios exceeding about
10/1, both VOCs and NO, will reduce O;, but less than proportionally. The reason the
reduction in O; is less than proportional is because equal reductions of VOCs and NO, at
intermediate ratios tend to keep O, production at its maximum. The nonlinear chemical
behavior of the VOC/NO, system, discussed earlier in this chapter, is at the heart of the
controversy over the role of NO, in O, control (Heuss and Wolff, 1993).

As noted in Section 3.6.1.2, the concept that a region is characterized by a single
VOC/NO, ratio is oversimplified and may actually lead to incorrect conclusions concerning the
optimal approach to O; reduction (Milford et al., 1989). The VOC/NO; ratio in a region is a
function of location and time of day; the source-rich center city area may be characterized by a
lower ratio than that in downwind, suburban areas at any given time of day. Because of the
complex spatial and temporal dependence of O, formation, grid-based photochemical air
quality models are necessary to evaluate the effect of emission reduction strategies for a
region.

Moreover, location-specific studies need to be performed to ascertain whether a
given area is in the VOC- or NO,-controlled regime. Research is being conducted into the
relationship between O, and NO, to determine whether NO, is a better indicator of the
O,;-forming potential than the VOC/NO, ratio (Shepson et al., 1992b; Trainer et al., 1993;
Kleinman et al., 1994; Milford et al., 1994).

In most modeling applications, inputs are adjusted within their range of uncertainty
to improve performance. A key test of quality of performance is to evaluate the model
predictions for other episodes without adjustments, using the same procedures for establishing
inputs as for the original episode.

Grid modeling applications are currently underway by or for state agencies for
approximately 20 areas within the United States to support regional O, SIP revisions.

An immediate problem faced for almost all urban areas is that even if an adequate
number of episodes exist, the episodes may not include the most adverse O, levels.
An inherent question in using a less adverse episode to develop control strategies is how do
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these strategies extrapolate to a more severe set of conditions? There is no clear answer to this
question. At present, control strategies, evaluated by using grid-based models, are determined
based on available episodes that have the largest amount of data, whether or not these episodes
contain the highest O, concentration achieved. Another issue is that the form of the NAAQS
for O; does not correspond with the output from a grid-based model. The model output does
not provide a direct answer to whether an area will meet the standard in its current statistically
based form.

Table 3-27 summarizes a number of recent O, control strategy evaluations for
different areas of the United States. Some general observations can be made concerning issues
that have arisen in control strategy exercises, particularly as they relate to problems associated
with different areas of the country (Roth, 1992). In California, model results indicate that O,
has been underestimated, most likely because VOC emissions from motor vehicles have been
seriously underestimated. The underestimation was hidden by adjusting other model inputs
within their range of uncertainty. In Atlanta, it has been estimated that approximately 60% of
the VOC inventory is of biogenic origin, and the variation of anthropogenic emissions
reductions required to achieve O, attainment within the uncertainty range of the biogenic
emissions is on the order of 20%. The uncertainty range of the biogenic VOC emissions needs
to be reduced to obtain tighter control strategy estimates.

The eastern United States poses special problems in regional-scale photochemical
modeling. Boundary conditions typically contribute 40 to 70% of pollutant loading in many
urban areas east of the Mississippi River. Regional-scale models are often either not available
or not sufficiently reliable to use in estimating upwind boundary conditions. Furthermore, data
are rarely available. If data are available, their use is limited to estimation of present
conditions. If models are used in control strategy assessment and 40 to 70% of pollutant
loading originates outside of the modeling region, major questions arise as to just how control
strategies are to be determined. If uncertainties at the regional scale are significant and if
regional-scale modeling is inaccurate, the limits of accuracy for urban-scale control strategy
determination need to be carefully assessed.

An essential question is, given the inevitable uncertainties associated with O; air
quality model predictions, can the effect of VOC and NO, emissions changes on O, levels be
unambiguously determined? The best approach to answering this question is a combination of
sensitivity/uncertainty studies. Given the estimated uncertainties in model inputs and
parameters for a particular application, the proposed VOC and NO, emissions change scenarios
should be examined for the full range of model inputs and parameters to determine how
sensitive conclusions about the effect on O, levels are to the inherent uncertainties.

3.6.6 Conclusions

The 1990 CAAA (U.S. Congress, 1990) have mandated the use of photochemical
grid models for demonstrating how most O, nonattainment areas can attain the NAAQS.
Predicting O; is a complex problem. There are still many uncertainties in the models;
nonetheless, models are useful for regulatory analysis and constitute one of the major tools for
attacking the O, problem. These models have developed considerably in the past 10 years.
However, their usefulness is constrained by having limited databases for use in model
evaluation and from having to rely on hydrocarbon emissions data that may be inaccurate.
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Table 3-27. Applications of Photochemical Air Quality Models to Evaluating Ozone®

Investigators Region/Episode Model Used Strategies Evaluated
Chu et al. (1993) Eastern United States; ROM2.2 Across-the-board NO,/VOC
Chu and Cox (1993) July 2-10, 1988 reductions
Roselle et al. (1992)
Mathur and Schere (1993)
Possiel et al. (1993) Northeastern United ROM2.2 Estimate O, reductions per 1990
Possiel and Cox (1993) States; CAAA
July 1-12, 1988
Milford et al. (1992) Northeastern United ROM Analysis of effect of NO,
States; reductions
July 2-17, 1988
Rao (1987) New York metropolitan UAM/ROM2.1 Evaluation of 1988 SIPs and
Rao et al. (1989) area, VOC/NO, strategies
Rao and Sistla (1993) 5 days in 1980
Scheffe and Morris New York UAM Use of UAM for demonstrating
(1990, 1991) St. Louis attainment with routinely
Atlanta available data
Dallas-Ft. Worth
Philadelphia
Possiel et al. (1990) Northeastern United ROM Ozone control strategies in
States; Northeast
July 2-17, 1988
Roselle and Schere (1990) Northeastern United ROM2.1 Sensitivity of O, in Northeast to
Roselle et al. (1991) States; biogenic emissions
July 12-18, 1980
Dunker et al. (1992a,b) Los Angeles UAM Effects of alternate fuels and
New York reformulated gasolines on O,
Dallas-Ft. Worth levels
Milford et al. (1989) South Coast Air Basin CIT Effects of systematic VOC and

Middleton et al. (1993)

Eastern United States and RADM

southeastern Canada

NO, reductions

2010 emissions projections

2See Appendix A for abbreviations and acronyms.

Primary issues and limitations associated with the use of photochemical air quality
models are described below.

¢ High noise-to-signal ratios. Model imprecision for ozone predictions typically
ranges from 25 to 40%, and inaccuracy (bias) ranges from 5 to 20%. These
uncertainties are often of the same order as the percentage of reduction in the
peak O; concentration for an area (from 160 to 120 ppb). Reasons for these
inaccuracies include uncertainties in emissions inventories.

¢ Inadequacies of supporting databases in most geographical areas. Most areas
are lacking or are deficient in data needed to estimate boundary conditions and
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meteorological and air quality conditions aloft. There are few areas where
speciated VOC concentrations are measured; surface NO, data may be
inaccurate. Where important data gaps exist, modeling accuracy suffers, and
the prospects for reducing or eliminating the presence of compensating errors
are diminished.

e Continuing need for improvements. Examples include the introduction of
prognostic meteorological modeling in the mid-1980s, the discovery of
underestimation of VOC emissions in the late 1980s, the inclusion of NO,
emissions from soils in 1993, and major adjustment of the emissions rates of
isoprene in 1994.

e Presence of compensating errors. It appears that compensating errors have been
present in many past applications, introducing the potential for bias into the
estimation of the impacts of emissions control strategies.

Comparison of model predictions against ozone measurements, although necessary,
is not a robust test of a model's accuracy. Ideally, one should evaluate performance against
more extensive sets of species such as individual VOCs, NO,, and NO,. Compensating errors
in input information to a model and within the model formulation can cause an O; model to
generate correct O, predictions for the wrong reasons. Therefore, model evaluation indicators
are needed to demonstrate the reliability of a prediction before the model can be used
effectively in making control strategy decisions.

It is important to stress that, in O; modeling, a modeling system also is at issue, not
just the air quality model itself. The modeling system includes a meteorological model, an
emissions representation (where an emissions model is preferred to the traditional "inventory"
approach), the air quality model, and a comprehensive supporting database. Where a problem
exists, the entire modeling system must be evaluated.

Models can be used effectively in a relative sense to rank different control
alternatives in terms of their effectiveness in reducing O, and to indicate the approximate
magnitude of improvement in peak O, levels expected under various control strategies. To do
so, there must be a sound emissions model and data and an adequate database on which to
construct the modeling. Grid-based O, air quality modeling is superior to the available
alternatives for O; control planning, but results can be misleading if the model is not evaluated
sufficiently. The goal is to minimize the chances of incorrect use of the model.

3.7 Summary and Conclusions

3.7.1 Tropospheric Ozone Chemistry
3.7.1.1 Ozone in the Unpolluted Atmosphere

Ozone is found in the stratosphere, the "free" troposphere, and the PBL of the
earth's atmosphere. In the stratosphere, O, is produced through cyclic reactions that are
initiated by the photolysis of molecular oxygen by short-wavelength radiation from the sun and
are terminated by the recombination of molecular oxygen and ground-state oxygen atoms.

In the "free" troposphere, O, occurs as the result of incursions from the
stratosphere; upward venting from the PBL (which is the layer next to the earth, extending to
altitudes of [J1 to 2 km) through certain cloud processes; and photochemical formation from
precursors, notably CH,, CO, and NO,. These processes contribute to the background O; in
the troposphere.
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Ozone is present in the PBL as the result of downward mixing from the stratosphere
and free troposphere and as the result of photochemical processes occurring within the PBL.
The photochemical production of O; and other oxidants found at the earth's surface is the
result of atmospheric physical and chemical processes involving two classes of precursor
pollutants, reactive VOCs and NO,. The formation of O, and other oxidants from its
precursors is a complex, nonlinear function of many factors, including the intensity and
spectral distribution of sunlight; atmospheric mixing and related meteorological conditions; the
reactivity of the mixture of organic compounds in ambient air; the concentrations of precursor
compounds in ambient air; and, within reasonable concentrations ranges, the ratio between the
concentrations of reactive VOCs and NO,_.

In the free troposphere and in many relatively "clean" areas of the PBL, CH, is the
chief organic precursor to in situ photochemical production of O, and related oxidants.
Exceptions can include clean forested or vegetated areas emitting biogenic organics. The
major tropospheric removal process for CH, is by reaction with OH radicals. In the complex
cyclic reactions that result in oxidation of CH,, there can be a net increase in O; or a net loss
of O,, depending mainly on the NO concentration.

3.7.1.2 Ozone Formation in the Polluted Troposphere

The same basic processes by which CH, is oxidized occur in the atmospheric
oxidative degradation of other, even more reactive and more complex VOCs. The only
significant initiator of the photochemical formation of O, in the troposphere is the photolysis of
NO,, yielding NO and a ground-state oxygen atom that reacts with molecular oxygen to form
O;. The O, thus formed reacts with NO, yielding O, and NO,. These cyclic reactions attain
equilibrium in the absence of VOCs. In the presence of VOCs, however, the equilibrium is
upset, resulting, from a complex series of chain reactions, in a net increase in O;.

The key reactive species in the troposphere is the OH radical, which is responsible
for initiating the oxidative degradation reactions of almost all VOCs. As in the CH, oxidation
cycle, the conversion of NO to NO, during the oxidation of VOCs is accompanied by the
production of O, and the efficient regeneration of the OH radical. The O; and PANs formed in
polluted atmospheres increase with the NO,/NO concentration ratio.

At night, in the absence of photolysis of reactants, the simultaneous presence of O,
and NO, results in the formation of the NO; radical. The reaction with NO;j radicals appears to
constitute a major sink for alkenes, cresols, and some other compounds, although alkyl NO;
chemistry is not well characterized.

Most inorganic gas-phase processes, that is, the nitrogen cycle and its
interrelationships with O, production, are well understood; the chemistry of the VOCs in
ambient air, however, is not. The chemical loss processes of gas-phase VOCs, with
concomitant production of O,, include reaction with OH, NO,, O,, and photolysis.

The major classes of VOCs in ambient air are alkanes, alkenes (including alkenes
from biogenic sources), aromatic hydrocarbons, carbonyl compounds, alcohols, and ethers. A
wide range of lifetimes in the atmosphere, from minutes to years, characterize the VOCs.

The only important reaction of alkanes is with OH radicals. For alkanes having
carbon-chain lengths of four or less (UC,), the chemistry is well understood and the reaction
rates are slow. For [JC; alkanes, the situation is more complex because few reaction products
have been found. Branched alkanes (e.g., isobutane) have rates of reaction that are highly
dependent on structure. It is difficult to represent reactions of these VOCs satisfactorily in the
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chemical mechanisms of air quality models. Stable products of alkane photooxidation are
known to include carbonyl compounds, alkyl nitrates, and [J-hydroxycarbonyls. Major
uncertainties in the atmospheric chemistry of the alkanes concern the chemistry of alkyl nitrate
formation; these uncertainties affect the amount of NO-to-NO, conversion occurring and,
hence, the amounts of O, formed during photochemical degradation of the alkanes.

Alkenes react in ambient air with OH and NOj radicals and with O;. All three
processes are important atmospheric transformation processes, and all proceed by initial
addition to the >C=C< bonds. Products of alkene photooxidation include carbonyl
compounds, hydroxynitrates and nitratocarbonyls, and decomposition products from the
energy-rich biradicals formed in alkene-O; reactions. Major uncertainties in the atmospheric
chemistry of the alkenes concern the products and mechanisms of their reactions with O,
especially the radical yields (which affect the O; formation yields).

The only tropospherically important loss process for aromatics (benzene and the
alkyl-substituted benzenes) is by reaction with the OH radical, followed by H-atom abstraction
or OH radical addition. Products of aromatic hydrocarbon photooxidation include phenolic
compounds, aromatic aldehydes, [J-dicarbonyls (e.g., glyoxal), and unsaturated carbonyl or
hydroxycarbonyl compounds. Aromatics appear to act as strong NO, sinks under low NO,
conditions. Major uncertainties in the atmospheric chemistry of aromatic hydrocarbons are
mainly with regard to reaction mechanisms and products under ambient conditions (i.e., for
NO, concentration conditions that occur in urban and rural areas). These uncertainties impact
on the representation of mechanisms in models.

Tropospherically important loss processes for carbonyl compounds not containing
>C=C< bonds are photolysis and reaction with the OH radical; those that contain such
bonds can undergo the same reactions as alkenes. Photolysis is the major loss process for
HCHO (the simplest aldehyde) and acetone (the simplest ketone), as well as for the
dicarbonyls. Reactions with OH radicals are calculated to be the dominant gas-phase loss
process for the higher aldehydes and ketones. Products formed and the importance of
photolysis are major uncertainties in the chemistry of carbonyl compounds.

Alcohols and ethers in ambient air react only with the OH radical, with the reaction
proceeding primarily via H-atom abstraction from the C-H bonds in these compounds.

It should be noted that the photooxidation reactions of certain higher molecular
weight VOCs can lead to the formation of significant yields of organic particulates in ambient
air. The chemical processes involved in the formation of O; and other photochemical
pollutants lead to the formation of OH radicals and oxidized VOC reaction products that are of
low enough volatility to be present as organic particulate matter. Hydroxyl radicals that
oxidize VOC:s also react with NO, and SO, to form HNO; and H,SO,, respectively, which can
become incorporated into aerosols as particulate nitrate and sulfate. Controls aimed at
reducing O, will also impact acid and secondary aerosol formation in the atmosphere.

3.7.2 Meteorological Processess Influencing Ozone Formation and Transport
3.7.2.1 Meteorological Processes
The surface energy (radiation) budget of the earth strongly influences the dynamics
of the PBL and, in combination with synoptic winds, provides the forces for the vertical fluxes
of heat, mass, and momentum. The redistribution of energy through the PBL creates

3-167



thermodynamic conditions that influence vertical mixing. Energy balances require study so
that more realistic simulations can be made of the structure of the PBL.

Day-to-day variability in O; concentrations depends heavily on day-to-day variations
in meteorological conditions. For example, the concentration of an air pollutant depends
significantly on the degree of mixing that occurs between the time a pollutant, or its
precursors, is emitted and the arrival of the pollutant at the receptor. Inversion layers (layers
in which temperature increases with height above ground level) are prominent determinants of
the degree of atmospheric vertical mixing and, thus, the degree to which O, and other
pollutants will be dispersed or accumulate. Ozone left in a layer aloft, as the result of reduced
turbulence and mixing at the end of daylight hours, can be transported through the night, often
to areas far removed from pollution sources. Downward mixing on the subsequent day can
result in increases in local concentrations from the transported O,.

Growing evidence indicates that the conventional use of mixing heights in modeling
is an oversimplification of the complex processes by which pollutants are redistributed within
urban areas. In addition, it is necessary to treat the turbulent structure of the atmosphere
directly and to acknowledge the vertical variations in mixing.

Geography can significantly affect the dispersion of pollutants along the coast or
shore of oceans and lakes. Temperature gradients between bodies of water and land masses
influence the incidence of surface conditions. The thermodynamics of water bodies may play a
significant role in some regional-scale episodes of high O, concentrations.

An "air mass" is a region of air, usually of multistate dimension, that exhibits
similar temperature, humidity, and stability characteristics. Episodes of high O, concentrations
in urban areas often are associated with high concentrations of O, in the surroundings.

The transport of O, and its precursors beyond the urban scale (150 km) to
neighboring rural and urban areas has been well documented and was described in the 1986
EPA criteria document for O;. Areas of O; accumulation are characterized by synoptic-scale
subsidence of air in the free troposphere, resulting in development of an elevated inversion
layer; relatively low wind speeds associated with a weak horizontal pressure gradient around a
surface high pressure system; a lack of cloudiness; and high temperatures.

3.7.2.2 Meteorological Parameters

Ultraviolet radiation from the sun plays a key role in initiating the photochemical
processes leading to O, formation and affects individual photolytic reaction steps. There is
little empirical evidence in the literature, however, linking day-to-day variations in observed
UV radiation levels with variations in O, levels.

An association between tropospheric O, concentrations and tropospheric
temperature has been demonstrated. Plots of daily maximum O; concentrations versus
maximum daily temperature for the summer months of 1988 to 1990 for four urban areas, for
example, show an apparent upper bound on O, concentrations that increases with temperature.
A similar qualitative relationship exists at a number of rural locations.

The relationship between wind speed and O, buildup varies from one part of the
country to another. Research done during the SOS (in the "Atlanta intensive" field study)
indicates that measurements of variations in wind speed among methods at a particular level
above ground must be larger than about 3 m/s to be considered statistically significant.

3.7.2.3 Normalization of Trends
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Statistical techniques (e.g., regression techniques) can be used to help identify real
trends in O, concentrations, both intra-annual and inter-annual, by normalizing meteorological
variability. In the SOS, for example, regression techniques were used successfully to forecast
O, levels to ensure that specialized measurements were made on appropriate days.

3.7.3 Precursors
3.7.3.1 Volatile Organic Compound Emissions

Hundreds of VOCs, commonly containing from 2 to about 12 carbon atoms, are
emitted by evaporative and combustion processes from a large number of source types. Total
U.S. VOC emissions in 1991 were estimated at 21.0 Tg. The two largest source categories
were industrial processes (10.0 Tg) and transportation (7.9 Tg). Emissions of VOCs from
highway vehicles accounted for almost 75 % of the transportation-related emissions; studies
have shown that the majority of these VOC emissions come from about 20% of the
automobiles in service, many, of which are older cars that are poorly maintained.

The accuracy of VOC emission estimates is difficult to determine, both for
stationary and mobile sources. Within major area sources, deviations of emission rates from
individual sources from assigned average factors can result in error for the entire area source.
Evaporative emissions, which depend on temperature and other environmental factors,
compound the difficulties of assigning accurate emission factors. In assigning VOC emission
estimates to the mobile source category, models are used that incorporate numerous input
parameters (e.g., type of fuel used, type of emission controls, age of vehicle), each of which
has some degree of uncertainty.

According to recent studies, vegetation emits significant quantities of VOCs into the
atmosphere, chiefly monoterpenes and isoprene, but also oxygenated VOCs. The most recent
biogenic VOC emissions estimate for the United States showed annual emissions of 29.1
Tg/year. Coniferous forests are the largest vegetative contributor on a national basis, because
of their extensive land coverage. Summertime biogenic emissions comprise more than half of
the annual totals in all regions because of their dependence on temperature and vegetational
growth. Biogenic emissions are, for those reasons, expected to be higher in the southern states
than in the northern.

Uncertainties in both biogenic and anthropogenic VOC emission inventories prevent
establishing the relative contributions of these two categories.

3.7.3.2 Nitrogen Oxides Emissions

Anthropogenic NO, is associated with combustion processes. The primary pollutant
emitted is NO, formed at high combustion temperatures from the nitrogen and oxygen in air
and from nitrogen in combustion fuel. Emissions of NO, in 1991 in the United States totaled
21.39 Tg. The two largest NO, emission sources are electric power generation plants and
highway vehicles. Emissions of NO, therefore are highest in areas having a high density of
electric-power-generating stations and in urban regions having high traffic densities. Between
1987 and 1991, transportation-related emissions remained essentially constant, whereas
stationary source NO, emissions increased about 10%.

Natural NO, sources include stratospheric intrusion, oceans, lightning, soils, and
wildfires. Lightning and soil emission are the only two significant natural sources of NO, in
the United States. The estimated annual lightning-produced NO, for the continental United
States is [11.0 Tg, about 60% of which is generated over the southern states. Both nitrifying
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and denitrifying organisms in the soil can produce NO,, principally NO. Emission rates depend
mainly on fertilization levels and soil temperature. Inventorying soil NO, emissions is difficult
because of large temporal and spatial variability, but the nationwide total has been estimated at
1.2 Tg/year, of which about 85% is emitted in spring and summer. About 60% of the total
soil NO, is emitted in the area of the country containing the central corn belt.

Combined natural sources contribute about 2.2 Tg of NO, to the troposphere over
the continental United States. Uncertainties in natural NO, inventories are much larger than
that for anthropogenic NO, emissions. Because a large proportion of anthropogenic NO,
emissions come from distinct point sources, published annual estimates are thought to be very
reliable.

3.7.3.3 Concentrations of Volatile Organic Compounds in Ambient Air

The VOCs most frequently analyzed in ambient air are NMHCs. Morning
concentrations (6:00 a.m. to 9:00 a.m.) have been measured most often because of the use of
morning data in EKMA and in air quality simulation models. Major field studies in 22 cities
in 1984 and in 19 cities in 1985 produced NMHC measurements that showed median values
ranging from 0.39 to 1.27 ppmC for 1984 and 0.38 to 1.63 ppmC in 1985. Overall median
values from all urban sites were about 0.72 ppmC in 1984 and 0.60 ppmC in 1985.

Comparative data over two decades (the 1960s through the 1980s) in the Los
Angeles and New York City areas showed decreases in NMHC concentrations in those areas.
Concomitant compositional changes were observed over the two decades, with increases
observed in the percentage of alkanes and decreases in the percentage of aromatic
hydrocarbons and acetylene.

Concurrent measurements of anthropogenic and biogenic NMHCs have shown that
biogenic NMHCs usually constituted much less than 10% of the total NMHCs. For example,
average isoprene concentrations ranged from 0.001 to 0.020 ppmC and terpenes from 0.001 to
0.030 ppmC.

3.7.3.4 Concentrations of Nitrogen Oxides in Ambient Air

Measurements of NO, at sites in 22 and 19 U.S. cities in 1984 and 1985,
respectively, showed that median NO, concentrations ranged from 0.02 to 0.08 ppm in most of
these cities. The 6 a.m. to 9 a.m. median concentrations in many of these cities exceeded the
annual average NO, values of 0.02 to 0.03 ppm found in U.S. metropolitan areas between
1980 and 1989. Nonurban NO, concentrations, reported as average seasonal or annual NO,,
range from <0.005 to 0.015 ppm.

Ratios of 6 a.m. to 9 a.m. NMOC to NO, are higher in southeastern and
southwestern U.S. cities than in northeastern and midwestern U.S. cities, according to data
from EPA's multi-city studies conducted in 1984 and 1985. Median ratios ranged from 9.1 to
37.7 in 1984; in 1985, median ratios ranged from 6.5 to 53.2 in the cities studied. Rural
NMOC/NO, ratios tend to be higher than urban ratios. Morning (6 a.m. to 9 a.m.)
NMOC/NO, ratios are used in the EKMA-type of trajectory model. Trends from 1976 to 1990
show decreases in these ratios in the South Coast Air Basin of California. The correlation of
NMOC/NO, ratios with maximum 1-h O, concentrations, however, was weak in a recent
analysis.
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3.7.3.5 Ratios of Concentrations of Nonmethane Organic Compounds to Nitrogen
Oxides

The ratios of NMOC/NO, vary substantially between cities and within a given city.
With certain exceptions, urban NMOC/NO, ratios have been in the range of 10 and below.
In contrast, ratios of NMOC/NO, in rural areas tend to equal or exceed 20. Discrepancies
have been found between ambient NMOC/NO, ratios and emission inventory NMOC/NO,
ratios, with ambient ratios of NMOC/NO, significantly exceeding emission ratios of
NMOC/NO,_.

Trends in ratios of NMOC/NO, have shown downward trends to well below
10 during the 1980s, both for the South Coast Air Basin and for cities in the eastern United
States. Based on these low ratios, hydrocarbon control should be more effective than NO,
control within a number of cities.

3.7.3.6 Source Apportionment and Reconciliation

Source apportionment (now regarded as synonymous with receptor modeling) refers
to determining the quantitative contributions of various sources of VOCs to ambient air
pollutant concentrations. Source reconciliation refers to the comparison of measured ambient
VOC concentrations with emissions inventory estimates of VOC source emission rates for the
purpose of validating the inventories.

Early studies in Los Angeles employing a "mass balance" approach to receptor
modeling showed the following estimated contributions of respective sources to ambient air
concentrations of NMOCs through C,,: automotive exhaust, 53 %; whole gasoline
evaporation, 12%; gasoline headspace vapor, 10%; commercial natural gas, 5%; geogenic
natural gas, 19%; and liquefied natural gas, 1%. Recent studies in eight U.S. cities showed
that vehicle exhaust was the dominant contributor to ambient VOCs (except in Beaumont,
where 14 % was reported). Estimates of the contributions of gasoline evaporation differ in
methodology; the more appropriate methods used result in estimates of large whole gasoline
contributions (i.e., equal to vehicle exhaust in one study and 20% of vehicle exhaust in a
second study).

The chemical mass balance approach used for estimating anthropogenic VOC
contributions to ambient air cannot be used for receptor modeling of biogenic sources.

A modified approach, applied to 1990 data from a downtown site in Atlanta, indicated a lower
limit of 2% (24-h average) for the biogenic percentage of total ambient VOCs at that location
(isoprene was used as the biogenic indicator species). The percentage varies during the 24-h
period because of the diurnal (e.g., temperature, light intensity) dependence of isoprene
concentrations.

Source reconciliation data have shown disparities between emission inventory
estimates and receptor-estimated contributions. For biogenics, emission estimates are greater
than receptor-estimated contributions. The reverse has been true for natural gas contributions
estimated for Los Angeles, Columbus, and Atlanta and for refinery emissions in Chicago.

3.7.4 Analytical Methods for Oxidants and Their Precursors
3.7.4.1 Oxidants

Current methods used to measure O; are CL, UV absorption spectrometry, and
newly developed spectroscopic and chemical approaches, including chemical approaches
applied to passive sampling devices for O;.
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The CL method, designated as the reference method by EPA, involves the direct
gas-phase reaction of O, with an alkene (C,H,) to produce electronically excited products,
which decay with the emission of light. Detection limits of 0.005 ppm and a response time of
less than 30 s are typical of currently available commercial instruments. A positive
interference from atmospheric water vapor was reported in the 1970s and has recently been
confirmed. Proper calibration can minimize this source of error.

Commercial UV photometers for measuring O; have detection limits of about
0.005 ppm, long-term precision within about + 5%, and a response time of <1 min. Ozone
has a fairly strong absorption band with a maximum near 254 nm; its molar absorption
coefficient at that wavelength is well known. Because the measurement is absolute, UV
photometry also is used to calibrate other O; methods.

A potential disadvantage of UV photometry is that atmospheric constituents that
absorb 254-nm radiation (and that are removed fully or partially by the MnO, scrubber used in
UV O, photometers) will be positive interferences in O; measurements. Interferences have
been reported in two recent studies but assessment of the potential importance of such
interferences (e.g., toluene, styrene, cresols, nitrocresols) is hindered by lack of absorption
spectra data in the 250-nm range and by lack of ambient measurements of most of the aromatic
photochemical reaction products. An interference from water also appears to occur from
condensation of moisture in sampling level. Results from collocated UV and CL instruments
indicated positive biases in the UV data of 20 to 40 ppb on hot, humid days.

Differential optical absorption spectrometry has been used to measure ambient O,
but further intercomparisons with other methods and interference tests are recommended.
Passive sampling devices permit acquisition of personal human exposure data and of
O, monitoring data in areas where the use of instrumental methods is not feasible. Three PSDs
are commercially available; all employ solid absorbents that react with O;.

Calibration of O, measurement methods (other than PSDs) is done by UV
spectrometry or by GPT of O; with NO. Ultraviolet photometry is the reference calibration
method approved by EPA. Ozone is unstable and must be generated in situ at time of use to
produce calibration mixtures.

Two methods generally have been employed to measure atmospheric PAN and its
higher homologues: IR and GC using an ECD. A third method, less often used, couples GC
with a molybdenum converter that reduces PAN to NO in the gas phase and subsequently
measures the NO with a CL analyzer. Peroxyacetyl nitrate and the higher PANs are normally
measured by GC-ECD. Detection limits have been extended to 1 to 5 ppt, using cryogenic
enrichment of samples and specified desorption procedures that limit losses associated with
cryosampling. Because PAN is unstable (explosive, and subject to surface-related
decomposition), the preparation of reliable calibration standards is difficult. Methods devised
to generate calibration standards include photolysis of static concentrations of gases, nitration
of peracetic acid in single hydrocarbons, and analysis of PAN as NO under specified
conditions of the dissociation of PAN into its precursors.

Early measurements of 10 to 80 ppb H,O, reported in the 1970s have been found to
be in error because of artifact formation of H,O, from reactions of absorbed gaseous O;.
Modeling results also indicate that lower levels of H,0,, on the order of 1 ppb, occur in the
atmosphere.

In situ measurement methods for H,O, include FTIR and TDLAS. The FTIR
method is specific for H,O, but has a high detection level of [J50 ppb (using a 1-km path
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length). The TDLAS method also is specific and has a detection level of 0.1 ppb over
averaging times of several minutes. Four frequently used wet chemical methods for
measurement of H,0, are available. All involve the oxidation of a substrate followed by
instrumental detection and quantification of the resulting CL or fluorescence. Detection limits
are comparable to those of FTIR and TDLAS, but interferences are common and must be
obviated or minimized with specified procedures.

Calibration of methods for gaseous H,O, measurement requires the immediate use
of standard mixtures prepared by one of several wet chemical methods.

3.7.4.2 Volatile Organic Compounds

Increased monitoring of VOCs is required under Title I, Section 182, of the CAAA
of 1990 because of the role of VOCs as precursors to the formation of O, and other
photochemical oxidants. Volatile organic compounds are those gaseous organic compounds
that have a vapor pressure greater than 0.15 mm and, generally, have a carbon content ranging
from C, through C,,.

Traditionally, NMHCs have been measured by methods that employ a FID as the
sensing element that measures a change in ion intensity resulting from the combustion of air
containing organic compounds. The method recommended by EPA for total NMOC
measurement involves the cryogenic preconcentration of nonmethane organic compounds and
the measurement of the revolatilized NMOCs using FID. The main technique for speciated
NMOC/NMHC measurements is cryogenic preconcentration followed by GC-FID. Systems
for sampling and analysis of VOCs have been developed that require no liquid cryogen for
operation, yet provide sufficient resolution of species.

Stainless steel canisters have become the containers of choice for collection of
whole-air samples for NMHC/NMOC data. Calibration procedures for NMOC
instrumentation require the generation, by static or dynamic systems, of dilute mixtures at
concentrations expected to occur in ambient air.

Preferred methods for measuring carbonyl species (aldehydes and ketones) in
ambient air are spectroscopic methods, on-line colorimetric methods, and HPLC method
employing DNPH derivatization in a silica gel cartridge. The most common method in current
use for measuring aldehydes in ambient air is the HPLC-DNPH method. Use of an O; scrubber
has been recommended to prevent interference in this method by O, in ambient air. Carbonyl
species are reactive, making preparation of stable calibration mixtures difficult; but several
methods are available.

Impetus for the development of methods for measuring the more reactive oxygen-
and nitrogen-containing organic compounds has come from their roles as precursors or
products of photochemical oxidation and also from the inclusion of many of these compounds
on the list of hazardous air pollutants in the 1990 CAAA. Measurement of these PVOCs is
difficult because of their reactivity and water solubility. Methods are still in development.

3.7.4.3 Oxides of Nitrogen

Nitric oxide and NO, comprise the NO, involved as precursors to O, and other
photochemical oxidants.

The most common method of NO measurement is the gas-phase CL reaction with
O;. The CL method is essentially specific for NO. Commercial NO monitors have detection
limits of a few parts per billion by volume in ambient air. Commercial NO analyzers may not
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have sensitivity sufficient for surface measurements in rural or remote areas or for airborne
measurements. Direct spectroscopic methods for NO exist that have very high sensitivity and
selectivity for NO. Major drawbacks of these methods are their complexity, size, and cost,
which restrict these methods to research applications. No PSDs exist for measurement of NO.

Chemiluminescence analyzers are the method of choice for NO, measurement, even
though they do not measure NO, directly. Minimum detection levels for NO, have been
reported to be 5 to 13 ppb, but more recent evaluations have indicated detection limits of 0.5 to
1 ppbv. Reduction of NO, to NO is required for measurement. In practice, selective
measurement of NO, by this approach has proved difficult. Commercial instruments that use
heated catalytic converters to reduce NO, to NO measure not NO and NO,, but more nearly
NO and total NO,. Thus, the NO, value inferred from such measurements may be
significantly in error, which may in turn affect the results of modeling of ambient O;.

Several spectroscopic approaches to NO, detection have been developed. As noted
above for NO, however, these methods have major drawbacks that include their complexity,
size, and cost, which, at present, outweigh the advantages of their sensitivity and selectivity.
Passive samplers for NO, exist but are still in the developmental stage for ambient air
monitoring.

Calibration of methods for NO measurement is done using standard cylinders of NO
in nitrogen. Calibration of methods for NO, measurement include the use of cylinders of NO,
in nitrogen or air, the use of permeation tubes, and gas-phase titration.

3.7.5 Ozone Air Quality Models
3.7.5.1 Definitions, Descriptions, and Uses

Photochemical air quality models are used to predict how O, concentrations change
in response to prescribed changes in source emissions of NO, and VOCs. They are
mathematical descriptions of the atmospheric transport, diffusion, removal, and chemical
reactions of pollutants. They operate on sets of input data that characterize the emissions,
topography, and meteorology of a region and produce outputs that describe air quality in that
region.

Two kinds of photochemical models are recommended in guidelines issued by EPA:
(1) the grid-based UAM is recommended for modeling O, over urban areas, and (2) EKMA is
identified as an acceptable approach under certain circumstances. The 1990 CAAA mandate
the use of three-dimensional (grid-based) air quality models such as UAM in developing SIPs
for areas designated as extreme, severe, serious, or multistate moderate.

In grid-based air quality models, the region to be modeled (the modeling domain) is
subdivided into a three-dimensional array of grid cells. Pertinent atmospheric processes and
chemical reactions are represented for each cell.

In trajectory models, such as EKMA, a hypothetical air parcel moves through the
area of interest along a path calculated from wind trajectories. Emissions are injected into the
air parcel and undergo vertical mixing and chemical transformations. Trajectory models
provide a dynamic description of atmospheric source-receptor relationships that is simpler and
less expensive to derive than that obtained from grid models, but meterological processes are
highly simplified in trajectory models

The EKMA-based method for determining O, control strategies has some
limitations, the most serious of which is that predicted emissions reductions are critically
dependent on the initial NMHC/NO, ratio used in the calculations. This ratio cannot be
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determined with any certainty because it is expected to be quite variable in time and space in
an urban area. Grid-based models have their limitations as well. These are pointed out
subsequently.

3.7.5.2 Model Components

Spatial and temporal characteristics of VOC and NO, emissions are major inputs to
a photochemical air quality model. Greater accuracy in emissions inventories is needed, for
biogenics and for both mobile and stationary source components. Grid-based air quality
models also require as input the three-dimensional wind field for the photochemical episode
being simulated. This input is supplied by "meteorological modules" which fall into one of
four categories: (1) objective analysis procedures; (2) diagnostic methods; (3) dynamic, or
prognostic, methods; and (4) hybrid methods that embody elements from both diagnostic and
prognostic approaches. Prognostic models are believed to provide a dynamically consistent,
physically realistic, three-dimensional representation of the wind and other meteorological
variables at scales of motion not resolvable by available observations. Outputs of prognostic
models do not always agree with observational data, but methods have been devised to mitigate
these problems.

A chemical kinetic mechanism (a set of chemical reactions), representing the
important reactions that occur in the atmosphere, is used in an air quality model to estimate the
net rate of formation of each pollutant simulated as a function of time. Chemical mechanisms
that explicitly treat each individual VOC component of ambient air are too lengthy to be
incorporated into three-dimensional atmospheric models. " Lumped" mechanisms are therefore
used. The chemical mechanisms used in existing photochemical O, models contain
uncertainties that may limit the accuracy of their predictions. Because of different approaches
to "lumping" of reactions, models can produce somewhat different results under similar
conditions. Both the UAM (UAM-IV) and EPA's ROM use the CMB-IV. The CBM-IV and
the SAPRC and RADM mechanisms are considered to represent the state of the science.

Dry deposition, the removal of chemical species from the atmosphere by interaction
with ground-level surfaces, is an important removal process for O; on both urban and regional
scales; and is included in all urban- and regional-scale models. Wet deposition (the removal of
gases and particles from the atmosphere by precipitation events) generally is not included in
urban-scale photochemical models, because O, episodes do not occur during periods of
significant clouds or rain.

Concentration fields of all species computed by the model must be specified at the
beginning of the simulation; these concentration fields are called the initial conditions. These
initial conditions are determined mainly with ambient measurements, either from routinely
collected data or from special studies, but interpolation can be used to distribute the surface
ambient measurements.

3.7.5.3 Evaluation of Model Performance

Air quality models are evaluated by comparing their predictions with ambient
observations. An adequate model should give accurate predictions of current peak
O, concentrations and temporal and spatial O, patterns. It also should respond accurately to
changes in VOC and NO, emissions, to differences in VOC reactivity, and to spatial and
temporal changes in emissions patterns for future years. Likewise, multispecies comparisons
could be the key in discriminating among alternative modeling approaches that provide similar
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predictions of O, concentrations. Adequate model performance for several reactive species
increases the assurance that correct O, predictions are not a result of chance or fortuitous
cancellation of errors introduced by various assumptions.

If only a routine database is available for modeling O, in an urban area, then several
concerns require attention relative to model performance evaluation: air quality aloft,
boundary conditions, ambient VOC data, and meteorological data aloft. If any of these four
areas is missing from the database, the performance evaluation and subsequent model
application must be adequately planned to minimize the possibility of compensatory errors.

3.7.5.4 Use of Ozone Air Quality Model for Evaluating Control Strategies
Photochemical air quality models are used for control strategy evaluation by first
demonstrating that a past episode, or episodes, can be simulated adequately and then reducing
hydrocarbon or NO, emissions, or both, in the model inputs and assessing the effects of these
reductions on O in the region. The adequacy of control strategies based on grid-based models
depends, in part, on the nature of input data for simulations and model validation, on input
emissions inventory data, and on the relationship between model output and the current form
of the NAAQS for O;.
Grid-based models that have been widely used to evaluate control strategies for
O; or acid deposition, or both, are the UAM, the CIT model, the ROM, the ADOM, and the
RADM.

3.7.5.5 Conclusions

Urban air quality models are becoming readily available for application and have
been applied in recent years in several urban areas. Significant progress also has been made in
the development of regional models and in the integration of state-of-the-art prognostic
meteorological models as drivers.

There are still many uncertainties in photochemical air quality modeling. Prime
among these are emission inventories. However, models are essential for regulatory analysis
and constitute one of the major tools for attacking the O; problem. Grid-based O; air quality
modeling is superior to the available alternatives for O, control planning, but the chances of its
incorrect use must be minimized.
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